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Abstract

The American Conference of Governmental Industrial Hygienists (ACGIH) accepted a lower 

threshold limit value (TLV) for respirable crystalline silica (RCS) exposure of 25 μg/m3, half of 

the previous TLV. This change is problematic because the current standard sampling and 

measurement practices used by NIOSH, OSHA, and MSHA are not sensitive enough to allow an 

analyst to confidently determine samples acquired near the TLV. In response to this need for a 

more sensitive method to analyze respirable dust filter samples for crystalline silica, a 

modification of current NIOSH infrared spectrometric methods is being developed. The additional 

sensitivity is gained by performing the infrared absorbance measurements at 77 K where 

absorbance peaks are more intense by virtue of being narrower. A quick-change cryostat has been 

fabricated such that a sample can be introduced to the spectrometer and cooled to 77 K in 5 min, 

interrogated for 1 min, and removed and the cryostat readied for another sample in 2 min, for a 

turnaround time of 8 min per sample, which is brief compared to the time required to prepare and 

redeposit a sample. Therefore, samples can be acquired and interrogated with legacy samplers, 

filters, pumps, spectrometers, and sample preparation, the only modification being the addition of 

a cryostat to the spectrometer. Preliminary experiments demonstrate that the peak-to-background 

ratio of the quartz signature band near 800 cm−1 increases by approximately 50 % on cooling from 

room temperature to 77 K. The slopes of the calibration curve derived from standards interrogated 

at both room temperature and 77 K indicate that the low-temperature method is approximately 25 

% more sensitive.
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Introduction

The health hazards of silicosis and black lung disease because of occupational exposure to 

respirable crystalline silica (RCS) have been known for centuries and have been the subject 

of much study and regulation in the United States and elsewhere [1]. These very debilitating 

diseases usually appear after some years of exposure and a period of latency that 
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complicates attempts to correlate exposure to disease risk. Crystalline silica remains a topic 

of interest because of the large number of workers exposed to it, as many as 1.7 × 106 in the 

United States [1]. The regulations instituted by the National Institute for Occupational 

Safety and Health (NIOSH), the Occupational Safety and Health Administration (OSHA), 

and the Mine Safety and Health Administration (MSHA) decades ago have made a 

significant impact on the number of deaths in the United States because of RCS. For 

example, deaths from silicosis were lowered by a factor of approximately six between 1968 

and 2004 [1]. Nevertheless, RCS is still a significant occupational health hazard, with 

approximately 500 deaths from black lung disease and 150 deaths from silicosis in 2004 [1]. 

In addition to silicosis and black lung disease, there are other disease hazards associated 

with exposure to RCS. The American Conference of Governmental Industrial Hygienists 

(ACGIH) decided, based on the increased risk of cancer in workers with pulmonary fibrosis 

from silica exposure, that the threshold limit value-time weighted average (TLV-TWA) of 

RCS be set below the current NIOSH recommended exposure limit of 50 μg/m3 to 25 μg/m3 

[2]. In addition to the identification of lung cancer hazard [3], other health hazards from 

chronic exposure to RCS recently identified include higher risks of tuberculosis and auto-

immune disease [4–6]. For these reasons, even though the RCS hazard has been under 

scrutiny and regulation for decades, further reductions in exposure are being proposed to 

protect workers.

In any attempt to regulate occupational exposure to RCS, it is implicit that practical methods 

to measure exposures at or below the regulatory level are available. For the current TLV 

value of RCS (usually in the form of quartz) exposure of 50 μg/m3, standard methods 

include NIOSH 7500, NIOSH 7602, NIOSH 7603, OSHA ID-142, and MSHA P-7. They 

are all based on acquiring samples on filters by pumps drawing air at 1.7 to 2.21/min. For 

example, at the current REL (recommended exposure limit, 50 μg/m3) of quartz, an 8-h 

sample drawn at 1.71/min will deposit 40.8 μg of quartz on a filter. These methods state a 

limit of detection of 5 μg or higher, which means that the limit of quantitation (LOQ), 

defined as 3.3 times the LOD (limit of detection) is 17 μg [7]. This level of sensitivity is 

adequate to monitor the older TLV; i.e., 40.8 μg of quartz on a filter is quantifiable. This 

LOQ is marginally adequate for the newest ACGIH TLV when a sample is drawn for less 

than 8 h, which frequently happens. Ultimately an analyst must be able to state with 

reasonable confidence that a measured value of quartz below the TLV indicates that the 

worker involved in the measurement was truly not exposed to excessive respirable quartz. In 

the case of a 4-h sample (i.e., a half-shift) at 1.71/min at the 25 μg/m3 concentration of 

respirable quartz dust, the analyst must quantify 10 μg of quartz. If the analyst cannot state 

with certainty whether or not the quartz mass exceeds this amount, then either the new 

ACGIH recommendation cannot be implemented or a sampling system of higher flow rate 

must be deployed wherever there is exposure to respirable quartz dust. Although current 

methods can meet this criterion, they do so barely, leaving the analyst very little margin for 

error [8–10]. The best resolution would be to develop a method of quartz measurement that 

is reliable well below 10 μg.

There are currently three approaches to determining quartz in dust samples included in the 

NIOSH Manual of Analytical Methods. The oldest is a wet chemical method, NMAM 7601 
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[11]. It uses the visible absorption of a silicomolybdate complex to determine the amount of 

silicon in an ashed sample after all forms of silicon-containing material except quartz have 

been removed by phosphoric acid. The limit of detection of this method is 10 μg. There are 

some problems [12] affecting the accuracy of this method when certain other silicates 

besides crystalline silica are present in the sample. It has also been reported that the 

precision of the method is particularly sensitive to the skill of the analyst in executing the 

procedure [12]. This method is labor-intensive and is no longer widely used. It is unlikely 

that any attempt to lower the LOD of this method by minor changes would be fruitful; there 

are inherent limitations that cannot be readily overcome.

The second approach to determination of quartz in dust uses the intensity of diffracted X 

rays at the angle characteristic of α-quartz. This is the approach of NMAM 7500 [11], 

MSHA P2 [13], OSHA ID-142 [14], and the United Kingdom's Health and Safety 

Laboratory Methods for the Determination of Hazardous Substances (MDHS) 101 [15]. 

NMAM 7500, MSHA P2, and OSHA ID-142 require that dust samples be removed from the 

filters on which they were collected and re-deposited on a silver membrane for the X-ray 

analysis, and are very similar except in the techniques used to remove the dust from the filter 

so that it can be re-deposited for analysis. The methods report total crystalline silica, but in 

fact the X-ray measurement distinguishes all the crystalline polymorphs of silica. The X-ray 

methods have at best a 5 μg limit of detection for quartz [12–16]. MDHS 101 omits the re-

deposition, but estimates an LOD of 10 μg because of non-linearity. All the X-ray methods 

specify a lower limit to their useful range of 20 μg. The X-ray diffraction peaks are very 

specific for every crystalline material, so it is relatively easy to correct for interferences. In 

many ways, this method is nearly ideal. However, it does have drawbacks, especially the 

capital cost of the X-ray diffractometer. Also, the method is not equally sensitive to all 

respirable size particles; the smaller end of the respirable range is measured with less 

sensitivity than the larger diameter particles [16]. The method has become popular in 

laboratories that can afford the initial capital expense of an X-ray diffractometer. In looking 

forward as to how the method could be made more sensitive there are limited avenues to 

pursue. Current generation X-ray detectors are very efficient, and therefore the only way to 

improve the X-ray method would be to either generate more X rays or to somehow affect the 

scattering efficiency of α-quartz. No simple approach to improving either of these methods 

was readily apparent.

The third technique for quantifying respirable α-quartz is based on the infrared method of 

crystalline silica determination found in NMAM 7602 and 7603 [11] and MSHA P-7 [17]. 

(NMAM 7602 uses a potassium bromide pellet to hold the dust sample in the infrared beam. 

The other methods redeposit the dust on a filter.) They use the characteristic quartz 

absorption band near 800 cm−1 to determine the amount of quartz present in the sample. The 

methods differ in some details of sample preparation and data analysis but the infrared 

spectrophotometric aspects are essentially the same. The measured intensity of a peak (either 

area or peak height) is related to the mass of absorbing molecules by Beer's Law,
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Here, I0 is the intensity of infrared light incident on a sample, I is the intensity transmitted 

by the sample, and K is the mass per unit area of the absorbing molecule on the filter that is 

illuminated by the infrared light. ∈ is the peak height at one point of the absorption spectrum 

(or peak area if integrated area is being used) in units of filter area per mass of quartz (i.e., 

the product ∈ K must be dimensionless). The logarithm of this ratio is the measured 

absorbance, and it is the absorbance that is proportional to the mass of quartz on the filter. 

The various infrared methods report different LODs and different lower limits of ranges of 

applicability. The LODs are 5 μg quartz for NMAM 7602 and 10 μg quartz for 7603. The 

reported lower limits of their working ranges are 10 and 30 μg quartz for 7602 and 7603, 

respectively. One inherent advantage to the infrared method is the low cost. The only 

expensive capital equipment necessary for these methods is the FTIR instrument itself, and 

suitable systems have become relatively inexpensive in recent years. The methods are 

precise, accurate, and relatively quick. Kaolin is an interference commonly found in dusts 

analyzed for quartz, but the methods include corrections for it. Ainsworth [18] reviewed the 

history of the methods and discussed some details of sample preparation. She reported an 

LOD of 4 μg quartz based upon the standard deviation of the filter background in MSHA 

P-7. Greater sensitivity would be preferable for monitoring concentrations below the current 

ACGIH TLV, or where it is desired to sample at the TLV for periods shorter than full shift. 

Diffuse reflection spectroscopy has been demonstrated to quantify quartz mass on a filter as 

well. Babu in 1993 and 1996 [19,20] presented a linear calibration from 25 μg to 325 μg 

using a signature peak at 1870 cm−1. The absorption band is far from the interference 

because of other minerals found in coal mine dust. However, as so far developed, this 

approach may not enable quantification of quartz masses low enough to monitor compliance 

with the ACGIH TLV from less than a full shift sample acquisition.

There are in general only three possible approaches to increase the sensitivity of the FTIR 

absorbance methods of determining quartz mass. They are to increase the intensity of the 

infrared source, improve the sensitivity of the infrared detector, or increase the value of ∈ at 

the frequency at which quartz is measured. As for the first approach, laser sources of 

continuous, tunable infrared radiation that cover the quartz frequencies are under 

development but are not available yet. The basic physics of the Nernst glowers that are used 

in current FTIR spectrometers are unchangeable; there is no way to get significantly more 

infrared light from them. As for the second approach, the infrared detectors in current FTIR 

spectrometers are already very efficient. Given the limitations of the methods discussed 

above, the only avenue to improve the sensitivity of the infrared measurement is the third 

approach, to modify the spectral characteristics of quartz itself.

The infrared spectrum of any molecule cannot be modified in most respects; it is a unique 

signature of the molecule in a particular geometric arrangement. There is one feature of the 

vibrational absorption spectrum of a molecule that can sometimes be modified, and that is 

the spectral width of a given peak. In the classical, damped harmonic oscillator model of a 
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molecular vibration, there are two parameters that describe the resonant response to an 

applied oscillating field, the natural resonant frequency and the damping constant. The 

natural resonant frequency is determined by the force constant of the vibration in question. 

The damping constant is a phenomenological parameter that defines the peak width of the 

observed transition. At the damped harmonic oscillator level of approximation a resonant 

line shape is Lorentzian and the total area under a Lorentzian resonant peak is independent 

of linewidth, i.e., independent of the damping constant [21,22]. Therefore, if a peak can be 

made narrower, the constant area constraint requires the peak height to increase. Hence, the 

signal-to-noise ratio at the peak maximum will increase. The Lorentzian peak width (i.e., the 

inverse of the damping constant) of a given vibrational absorption peak is determined by 

two mechanisms, population relaxation and pure dephasing [22]. Both of these mechanisms 

contribute to shortening the lifetime of a vibration excited by an infrared beam, and by 

Heisenberg's uncertainty principle, the shorter the lifetime the greater the uncertainty, or in 

this example, the wider the peak width. These mechanisms can be temperature dependent 

because they originate in the temperature-dependent movement of vibrational energy 

(phonons) through the crystal lattice; the higher the temperature, the more phonons there are 

that can perturb the absorbing molecules. (The actual details of the relaxation process that 

define spectral peak broadening are much more complicated than described here, but a 

thorough description is far beyond the scope of this work [21–24].) Therefore, it seemed 

possible that the infrared methods for determining quartz could be made more sensitive by 

performing the method at low temperatures.

Experimental Approach, Results, and Discussion

To make low temperature spectrometry for determination of quartz practical, it is necessary 

that an inexpensive quick-change cryostat be used. A suitable arrangement (Fig. 1(a) and 

1(b)) comprises a glass cold finger with a Kovar end cap and a copper block soldered to the 

end cap, the Dew-Johnson cryostat [25]. The copper block is drilled to accommodate a 25 

mm filter on one side and a 25 mm magnetic “doughnut” on the other, with a hole in the 

middle over which the sample deposit is centered and through which the infrared light beam 

of the spectrometer will pass. A removable steel ring is used to hold the filter in place. The 

lower section of the cryostat is one piece of glass in the shape of an inverted “T.” The 

glassware was custom made by Ace Glass Corporation and the copper blocks were 

fabricated by the NIOSH Morgantown machine shop. The horizontal section holds infrared 

transparent windows held against O-ring seals. The upright section has an O-ring seal that 

mates to a seal on the cold finger. There is a vacuum port attached to the lower section by O-

ring compression fittings. In operation, a filter is seated in place in the copper block of the 

cold finger, clamped by the steel ring and magnet. The cold finger is then seated in the 

Dewar and the Dewar evacuated. A dual stage roughing pump is adequate, but a small turbo 

pump provides a better vacuum. Both were used in these experiments. In approximately 1 

min, the Dewar is evacuated to a medium vacuum. The pressure difference compresses the 

window and cold finger O-ring seals adequately to seal against leaks. After vacuum is 

attained the cold finger is filled with liquid nitrogen, approximately 300 ml, not counting 

boiloff, and the cold finger begins to cool. Any residual water vapor and carbon dioxide will 

freeze to the cold finger leaving only traces of nitrogen and oxygen in the infrared light path. 
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By monitoring changes in the absorption spectrum of a sample it was found that narrowing 

was complete in approximately 3 min, implying that the filter has reached the temperature of 

boiling nitrogen, 77 K. Spectral acquisition is complete in less than 1 min, at which point the 

Dewar is vented and the cold finger with filter sample removed. The cold finger is then 

allowed to slowly come to room temperature so that the filter can be easily removed and the 

cold finger loaded with another filter. By having several cold fingers available, samples can 

be determined every few minutes. Commercial cryostats for infrared spectrometers are 

available, but typically they are equipped with massive metal cold fingers that require 20 

min or more to attain temperature. That long cool down time severely limits the rate at 

which samples could be determined.

The literature on infrared absorption line-widths in quartz does not include the temperature 

dependence of line-widths of dusts at low temperatures, so preliminary experiments using 

re-deposited coal ash samples were performed to compare line-widths of actual coal ash 

samples at low temperature (77 K) with those at room temperature (300 K), with 

encouraging results. Further experiments with standard samples of pure quartz were 

performed. Typical spectra of a 10 μg deposit of NIST 1878a on a DM450 filter are shown 

in Fig. 2. The bottom frame shows a spectrum recorded under conditions as described in 

NMAM 7603 at room temperature. The top frame shows the spectrum from the same 

deposit mounted in the cryostat and recorded at 77 K. The low-temperature peak is 

noticeably sharper than the room temperature version. From these spectra, it is apparent that 

the signature peak for quartz near 800 cm−1 is significantly enhanced at 77 K as compared to 

300 K. To determine the relative sensitivity of this modification of NMAM 7603, five 

samples each with mass loadings of 1, 2, and 5 μg of quartz were made by pipetting aliquots 

of a NIST standard quartz (1878a) in alcohol suspension onto DM450 filters as described in 

NMAM 7603. (NMAM 7603 does not specify standards at such low-mass loadings, but 

presumably the nominal mass loadings are approximately correct.) The infrared absorbance 

spectrum of a filter blank was recorded and subtracted from the absorbance spectra of the 

filters plus quartz. The peak heights above baseline were measured at the peak maxima near 

800 cm−1 according to the method described in NMAM 7603. Spectra were recorded on a 

Nicolet 6700 spectrometer (Thermo Fisher Scientific, Waltham, MA) operated through the 

Omnic software package (version 8.1.11, Thermo Fisher Scientific). Samples were held in 

the Dew-Johnson cryostat for all low-temperature measurements. In Fig. 3 are shown a pair 

of calibration curves for a single set of NIST standard quartz 1878 a spiked onto DM450 

filters as described in NMAM 7603, one curve from data acquired at 77 K and one from data 

acquired at 300 K. The key feature to note here is that at these very-low-mass loadings, the 

slope of the low-temperature calibration curve is larger by approximately a third compared 

to the room temperature curve. By a two-way analysis of variance, the slopes are statistically 

different (p < 0.5).

Conclusion

These preliminary results indicate that by acquiring infrared spectra at temperatures near the 

temperature of boiling nitrogen, a significant improvement in the LOD and LOQ of NIOSH 

infrared methods of determining quartz in respirable dusts can be achieved. In the NIOSH 

method, which uses peak heights, this arises because the net intensity above background of 

Chisholm et al. Page 6

Annu Book ASTM Stand Sect 11 Water Environ Technol. Author manuscript; available in PMC 2015 November 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



the signature infrared absorbance peak for quartz is enhanced at low temperatures. It is 

feasible to use standard dust samples acquired under typical conditions using conventional 

hardware and methods in measurements of quartz at levels not previously obtainable. These 

measurements can be made using conventional FTIR spectrometers with minimal additional 

equipment and minimal changes to NMAM 7603. Results to date are suggestive of a usable 

improvement, but a definitive statement about the magnitude of improvement awaits the 

development of an orthogonal method of calibration. Efforts to address this need are 

currently underway.
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Fig. 1. 
(a) A rack of cold fingers for the Dew-Johnson cryostat. A standard IR card is there to 

indicate the size of the cold fingers. (b) Dew-Johnson cryostat lower inverted-T section. The 

white caps hold the IR windows in place. The vent and vacuum selection valve is visible on 

the side, along with the steel O-ring vacuum fitting. The large O-ring joint on top is where 

the cold finger sits.
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Fig. 2. 
Infrared absorption spectra in the region of the 800-cm−1 quartz peak of a single sample of 

10 μg of 1878a NIST quartz deposited on a DM450 filter. The 300 K spectrum was recorded 

with the filter mounted in a standard configuration. The 77 K spectrum was recorded with 

the filter mounted in a Dew-Johnson cryostat equipped with zinc selenide windows.
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Fig. 3. 
Calibration curves from a single set of samples derived from spectra taken measured at room 

temperature and at 77 K. Peak height above baseline in absorbance units as a function of 

quartz mass in micrograms. The slope of the calibration at 300 K is .0022; the slope at 77 K 

is .0028.
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